Mutational mapping of pUL131A of human cytomegalovirus emphasizes its central role for endothelial cell tropism.
نویسندگان
چکیده
The UL131A protein is part of a pentameric variant of the gcIII complex in the virion envelope of human cytomegalovirus (HCMV), which has been found essential for efficient entry into endothelial cells (ECs). Using a systematic mutational scanning approach, we aimed to define peptide motifs within the UL131A protein that contribute to EC infection. Mutant viruses were generated in which charged amino acids within frames of 2 to 6 amino acids were replaced with alanines. The resulting viruses were evaluated with regard to their potential to infect EC cultures. Four clusters of charged amino acids essential for EC infection were identified (amino acids 22 to 27, 32 to 35, 64 to 69, and 116 to 121). Mutations of individual charge clusters within amino acids 72 to 104 caused minor reductions of EC tropism, but these effects were additive in a combined mutation, showing that this region also contributes to EC tropism. Only charge clusters within amino acids 46 to 58 were found irrelevant for EC infection. In conclusion, the unusual sensitivity to mutations, together with the remarkable conservation of the UL131A protein, emphasizes its particular role for EC tropism of HCMV.
منابع مشابه
HCMV Spread and Cell Tropism are Determined by Distinct Virus Populations
Human cytomegalovirus (HCMV) can infect many different cell types in vivo. Two gH/gL complexes are used for entry into cells. gH/gL/pUL(128,130,131A) shows no selectivity for its host cell, whereas formation of a gH/gL/gO complex only restricts the tropism mainly to fibroblasts. Here, we describe that depending on the cell type in which virus replication takes place, virus carrying the gH/gL/pU...
متن کاملHuman cytomegalovirus strain Toledo lacks a virus-encoded tropism factor required for infection of aortic endothelial cells.
Human cytomegalovirus (HCMV) strains were investigated to identify those with altered tropism for endothelial cells. In viral replication kinetics analysis, HCMV strain Toledo replicated poorly in aortic endothelial cells (AECs), and the virus count was reduced by 2-3 log units, in comparison with strain AD169. Virus entry at the cell surface for each strain was equivalent. However, immunofluor...
متن کاملDETECTION AND RESTRICTION ANALYSIS OF C YTOMEGALOVIRUS DNA PERSISTING IN HUMAN ATHEROSCLEROTIC PLAQUES USING POLYMERASE CHAIN REACTION
The polymerase chain reaction (PCR) as applied to detection of a foreign DNA in clinical specimens could provide a sensitive instrument for rapid detection of viral DNA persisting in tissues of patients suspected of latent infection. Human cytomegalovirus (HCMV) DNA was found in arterial plaques of patients with atherosclerotic lesions using a PCR assay with nested primer oligonucleotides ...
متن کاملModification of human cytomegalovirus tropism through propagation in vitro is associated with changes in the viral genome.
Following extensive propagation in fibroblasts, human cytomegalovirus (HCMV) loses tropism for a number of otherwise natural host cells, in particular, endothelial cells. In this study, the hypothesis was tested that loss of endothelial tropism is associated with the appearance of genomic variants. Initial quantitative focus expansion assays on endothelial monolayers demonstrated that, while th...
متن کاملImpact of Sequence Variation in the UL128 Locus on Production of Human Cytomegalovirus in Fibroblast and Epithelial Cells
The human cytomegalovirus (HCMV) virion envelope contains a complex consisting of glycoproteins gH and gL plus proteins encoded by the UL128 locus (UL128L): pUL128, pUL130, and pUL131A. UL128L is necessary for efficient infection of myeloid, epithelial, and endothelial cells but limits replication in fibroblasts. Consequently, disrupting mutations in UL128L are rapidly selected when clinical is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 86 1 شماره
صفحات -
تاریخ انتشار 2012